Unifying Quantum and Relativistic Theories

Quantum numbers: a classical interpretation

Please follow and like us:
0.9k
1.1k
788
404
1k

Quantum mechanics defines the spatial orientation of electrons in atoms only in terms of the probabilistic values associated with Schrödinger wave equation.

In other words in a quantum system Schrödinger wave equation plays the role of Newtonian laws in that it predicts the future position or momentum of a electron in terms of a probability distribution.

However it may be possible to develop a classical understanding of why the four quantum numbers define the arrangement of electron in atoms by converting or transposing Einstein’s space-time universe to one made up of fourth *spatial* dimension.

The reason this is necessary is because the quantum numbers deal more with the spatial than the time properties of three-dimensional space therefore eliminating time will allow for a more direct application of classical laws to the solution.

Einstein gave us the ability to do this when he use the equation E=mc^2 and the constant velocity of light to define the geometric properties of space-time because it provided a method of converting a unit of time in a space time environment  to unit of space in four spatial dimensions.  Additionally because the velocity of light is constant he also defined a one to one quantitative correspondence between his space-time universe and one made up of four *spatial* dimensions.

This should allow one to define the physicality of the Principal Quantum number (n),  the Angular Momentum “â„“”  (l), Magnetic (m) and Spin Quantum Number(+1/2 and -1/2) by extrapolating the laws of a classical Newtonian environment to a fourth *spatial* dimension.
For example In the article “Why is energy/mass quantized?” Oct. 4, 2007 it was shown one can derive the quantum mechanical properties of energy/mass by extrapolating the laws governing resonance in a three-dimensional environment to a matter wave moving on a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension.

Briefly it showed the four conditions required for resonance to occur in a classical Newtonian environment, an object, or substance with a natural frequency, a forcing function at the same frequency as the natural frequency, the lack of a damping frequency and the ability for the substance to oscillate spatial would occur in one consisting of four spatial dimensions

The existence of four *spatial* dimensions would give the “surface” of a three-dimensional space manifold (the substance) the ability to oscillate spatially with respect to it thereby fulfilling one of the requirements for classical resonance to occur.

These oscillations would be caused by an event such as the decay of a subatomic particle or the shifting of an electron in an atomic orbital. This would force the “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension to oscillate with the frequency associated with the energy of that event.

Therefore, these oscillations on a “surface” of three-dimensional space, would meet the requirements mentioned above for the formation of a resonant system or “structure” in space.

Observations of a three-dimensional environment show the energy associated with resonant system can only take on the incremental or discreet values associated with a fundamental or a harmonic of the fundamental frequency of its environment.

Similarly the energy associated with resonant systems in four *spatial* dimensions could only take on the incremental or discreet values associated a fundamental or a harmonic of the fundamental frequency of its environment.

These resonant systems in four *spatial* dimensions are responsible for the incremental or discreet energy associated with quantum mechanical systems.

However the fact that one can derive the quantum mechanical properties of energy/mass by extrapolating the resonant properties of a wave in three-dimensional environment to a fourth *spatial* dimension means that one should be able to derive the quantum numbers that define the properties of the atomic orbitals in those same terms.

As mentioned earlier there are four quantum numbers.  The first the Principal Quantum number is designated by the letter “n”, the second or Angular Momentum by the letter “â„“” the third or Magnetic by the letter “m” and the last is the Spin or “s” Quantum Number.

In three-dimensional space the frequency or energy of a resonant system is defined by the vibrating medium and the boundaries of its environment.

For example the resonant energy of a standing wave generated when a violin string plucked is determined in part by the length and tension of its strings.

Similarly the energy of the resonant system the article “Why is energy/mass quantized?” associated with atom orbitals would be defined by the “length” or circumference of the three-dimensional volume it is occupying and the tension on the space it is occupying.

Therefore the physicality of “n” or the principal quantum number would be defined by the fundamental vibrational energy of three-dimensional space that article associated with the quantum mechanical properties of energy/mass.

The circumference of its orbital would correspond to length of the individual strings on a violin while the tension on its spatial components would be created by the electrical attraction of the positive charge of the proton.

Therefore the integer representing the first quantum number would correspond to the physical length associated with the wavelength of its fundamental resonant frequency.

However, classical mechanics tells us that each environment has a unique fundamental resonant frequency which is not shared by others.

The reason an electron does not fall into the nucleus is because as was shown in the article “Why is energy/mass quantized?” all energy is contained in four dimensional resonant systems.  Therefore the fundamental frequency or wavelength of four dimensional space would define the minimum energy and therefore the physical size of the first quantum orbital.

This defines physicality of the environment associated with the first quantum number.  (The reason why it is unique for each subdivision of electron orbitals will be developed later) . Additionally observations tell us that resonance can only occur in an environment that contains an integral or half multiples of the wavelength associated with its resonant frequency and that the energy content of its harmonics are always greater than those of its fundamental resonate energy.

This allows one to derive the physicality of the second “â„“” or azimuth quantum number in terms of how many harmonics of the fundament frequency a given orbital can support. 

In the case of a violin the number of harmonics a given string can support is in part determined by its length.   As the length increase so does the number of harmonics because its greater length can support a wider verity of frequencies and wavelengths.  However, as mentioned earlier each additional harmonic requires more energy than the one before it.  Therefore there is a limit to the number of harmonics that a violin string can support which is determined in part by its length.

Similarly each quantum orbital can only support harmonics of their fundamental frequency that will “fit” with the circumference of the volume it occupies.

For example the first harmonic of the 1s orbital would have energy that would be greater than that of the first because as mentioned earlier the energy associated with a harmonic of a resonant system is always greater than that of its fundamental frequency.  Therefore it would not “fit” into the volume of space enclosed by the 1s orbital because of its relatively high energy content.  Therefore second quantum number of the first orbital will be is 0. 

However it also defines why in terms of classical wave mechanics the number of suborbital associated with the second quantum number increases as one move outward from the nucleus because a larger number of harmonics will be able to “fit” with the circumference of the orbitals as they increase is size.

This also shows that the reason the orbitals are filled in the order 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s is because the energy of the 3d or second harmonic of the third orbital is higher in energy than the energy of the fundamental resonant frequency of the 4th orbital.  In other words classical wave mechanics tells us the energy of the harmonics of the higher quantum orbitals may be less than that of the energy of the fundamental frequency of preceding one so their harmonics would “fit” into circumference of the lower orbitals

The third or Magnetic (m) quantum number physical defines how the energy associated with each harmonic in each quantum orbital is physically oriented with respect to axis of three-dimensional space.

For example it tells us that the individual energies of 3 “p” orbitals are physically distributed along each of the three axis of three-dimensional space.

The physicality of the fourth quantum or spin number has nothing to do with the resonant properties of space however as was shown in the article “Pauli’s Exclusion Principal: a classical interpretation” Feb. 15, 2012 one can derive its physicality by extrapolating the laws of a three-dimensional environment to a fourth *spatial* dimension.

That article it was shown all forms of energy including the angular momentum of particles can be defined in terms of a displacement in a “surface* of three-dimensional space manifold with respect to a fourth *spatial* dimension.

In three-dimensional space one can use the right hand rule to define the direction of the angular momentum of charged particles.  Similarly the direction of that displacement with respect to a fourth *spatial* dimension can be understood in term of the right hand rule.  In other words the angular momentum or energy of an electron with a positive spin would be directed “upward” with respect to a fourth *spatial* dimension while one with a negative spin would be associated with a “downwardly” directed one.
Therefore one can define the physically of the fourth or spin quantum number in terms of the direction a “surface” of three-dimensional space is displaced with respect to a fourth *spatial* dimension.  For example if one defines energy of an electron with a spin of -1/2 in terms of a downward directed displacement one would define a +1/2 spin as an upwardly directed one.

The physical reason why only two electrons can occupy a quantum orbital and why they have slightly different energies can also be derived by extrapolating the laws of a classical three-dimensional environment to a fourth *spatial* dimension.

There a two ways to fill a bucket.  One is by pushing it down and allowing the water to flow over its edge or by using a cup to raise it to the level of the buckets rim.

Similarly there would be two ways fill an atomic orbital according to the concepts presented in that article.  One would be by creating a downward displacement on the “surface” of a three-dimensional space manifold with respect to a fourth *spatial* to the energy level associated with the electron while the other would create an upward displacement in that surface.

However the energy required by each method will not be identical for the same reason that it requires slightly less energy to fill a bucket by pushing it down below the surface than it would be to fill one that was above it because the one above the surface would be at a higher gravitational potential.

However it also explains why no two quantum particles can have the same quantum number because observations of water show that there is a direct relationship between the magnitudes of a displacement in its surface to the magnitude of the force resisting that displacement. 

Similarly the magnitude of a displacement in a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension caused by two quantum particles with similar quantum numbers would greater than that caused by a single one.  Therefore, they will repel each other and seek the lower energy state associated with a different quantum number because the magnitude of the force resisting the displacement will be less for them than if they had the same number.

This shows how one can define a physical model for the energy distribution with an atom by extrapolating the deterministic laws of a classical three-dimensional environment to a fourth *spatial* dimension.

Later Jeff

Copyright Jeffrey O’Callaghan 2012

Please follow and like us:
0.9k
1.1k
788
404
1k
Exit mobile version