Have you ever wondered why so many seeming rational scientists make seemly irrational assumptions to explain why our universe behaves the way it does and why Einstein was unable see, as Robert Oerter pointed out in his book “The Theory of Almost Everything: the magic of relativistic Quantum electrodynamics or QED.
For example he tells one reason he may have felt this way is because it defines the charge around a solitary electron as being caused by the spontaneous creation and evaporation of virtual electron-positron pairs which then instantaneously disappear. In other words when a virtual electron-positron pair is created near the (real) electron, the (imaginary) virtual positron will be attracted toward the real electron, while the virtual electron is repelled. Therefore there should be a resulting separation of charge
I think most rational people would consider someone irrational if they tried to convince l us the reason why they were late for work was because a swam of virtual or imaginary cars were blocking the road and disappeared after we showed up.
Shouldn’t we hold our scientists to the same degree of rationality?
Most who have studied the history of science are aware that Einstein was vehemently opposed to many of the fundamental components of quantum mechanics such as the existence of virtual particle’s to explain an isolated charge.
This was true even though he was able, in his General Theory of Relativity to derive the force of gravity in terms of the geometry of space and time while being unable to do the same for electromagnetism and charge, as was documented by the American Institute of Physics.
“From before 1920 until his death in 1955, Einstein struggled to find laws of physics far more general than any known before. In his Theory of Relativity, the force of gravity had become an expression of the geometry of space and time. The other forces in nature, above all the force of electromagnetism, had not been described in such terms. But it seemed likely to Einstein that electromagnetism and gravity could both be explained as aspects of some broader mathematical structure. The quest for such an explanation — for a “unified field” theory that would unite electromagnetism and gravity, space and time, all together — occupied more of Einstein’s years than any other activity”.
One reason why it was difficult of him to visualize electromagnetic fields including those around a single charge may have been because he chose to define the universe in terms of four dimensional space-time instead of four *spatial* dimensions because, as will be shown below it easier to visualize the properties of electrometric waves and charge in terms of their spatial rather time or space-time properties.
However he did provide a method of understanding them in terms of their common properties when he chose to define gravity in a space-time environment in terms of the equation E=mc^2 and constant velocity of light because that give him the ability to redefined it terms of the spatial properties of four *spatial* dimensions. Additionally because the velocity of light is constant he also defined a one to one quantitative and qualitative correspondence between his space-time universe and one made up of four *spatial* dimensions.
The fact that one can use Einstein’s equations to qualitatively and quantitatively redefine the curvature in space-time he associated with gravity in terms of four *spatial* dimensions is one bases for assuming as was done in the article “Defining energy?†Nov 27, 2007 that all forces can be derived in terms of a spatial displacement in a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension.
One of the advantages to using this technique is that it allows one to define the physicality of gravitational and electrical forces including those around a single electron in the same terms.
For example In the article “Gravity in four spatial dimensions” Dec. 15, 2007 it was shown one can derive gravitational forces in terms of curvature or physical displacement in a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension as well as one in a four dimensional space-time environment.
However the article “What is electromagnetism?“ Sept, 27 2007 showed one can also derive the forces associated with electromagnetism in terms of a similar displacement in the “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension.
Briefly that article showed it is possible to derive the forces associated with an electromagnetic wave by extrapolating the laws of Classical Wave Mechanics in a three-dimensional environment to a matter wave moving on a “surface” of three-dimensional space manifold with respect to a fourth *spatial* dimension.
A wave on the two-dimensional surface of water causes a point on that surface to be become displaced or rise above or below the equilibrium point that existed before the wave was present. A force will be developed by the differential displacement of the surfaces, which will result in the elevated and depressed portions of the water moving towards or become “attracted” to each other and the surface of the water.
Similarly a matter wave on the “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension would cause a point on that “surface” to become displaced or rise above and below the equilibrium point that existed before the wave was present.
Therefore, classical wave mechanics, if extrapolated to four *spatial* dimensions tells us a force will be developed by the differential displacements caused by a matter wave moving on a “surface” of three-dimensional space with respect to a fourth *spatial* dimension that will result in its elevated and depressed portions moving towards or become “attracted” to each other.
This defines the causality of the attractive forces of unlike charges associated with the electromagnetic wave component of a photon in terms of a force developed by a differential displacement of a point on a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension.
However, it also provides a classical mechanism for understanding why similar charges repel each other because observations of water show that there is a direct relationship between the magnitudes of a displacement in its surface to the magnitude of the force resisting that displacement.
Similarly the magnitude of a displacement in a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension caused by two similar charges will be greater than that caused by a single one. Therefore, similar charges will repel each other because the magnitude of the force resisting the displacement will be greater for two charges than it would be for a single charge.
One can define the causality of electrical component of electromagnetic radiation in terms of the energy associated with its “peaks” and “troughs” that is directed perpendicular to its velocity vector while its magnetic component would be associated with the horizontal force developed by that perpendicular displacement.
However, Classical Mechanics tells us a horizontal force will be developed by that perpendicular or vertical displacement which will always be 90 degrees out of phase with it. This force is called magnetism.
This is analogous to how the vertical force pushing up of on mountain also generates a horizontal force, which pulls matter horizontally towards the apex of that displacement.
However, as was mentioned earlier gravity can also be explain in terms of a differential force caused by a displacement in a “surface” of a three-dimensional space manifold with respect to a fourth *spatial* dimension.
This shows how one can define a common mechanism for the causality of both electromagnetism and gravity in terms of a “unified field” consisting of four *spatial* dimension by extrapolating the laws of classical mechanics in a three-dimensional environment to four *spatial* dimensions.
In other words one can visualize the fact that unlike charge attract each other while like ones repel in terms of the asymmetrical properties of space-time or four spatial dimensions.
Einstein was unable to accomplish this in terms of four-dimensional space-time because time is only observe to move in one direction forwards and therefore making it difficult to visualize the bi-directional movement of the spatial component of a matter wave moving on its “surface” that is responsible for electromagnetism .
However it also give a more rational explanation of the charge around a solitary electron than the spontaneous creation and evaporation of virtual electron-positron pairs because it shows that it can be understood in terms of a physical displacement in a “surface” of a three-dimension space manifold with respect to fourth spatial dimension.
In other words it shows that electric forces are related to a physical displacement in a surface of a three dimensional space manifold with respect to a either a higher spatial or time dimension thereby eliminating the need to evoke the existence of virtual electron-positron pairs to understand the behavior of a charge around a solitary electron.
It should be remember Einstein’s genius allows us to choose to define charge in either a space-time environment or one consisting of four *spatial* dimension when he defined that environment in terms mass energy and the constant velocity of light. This interchangeability broadens the environment encompassed by his theories thereby giving us a new perspective on the physicality of charge.
Latter Jeff
Copyright Jeffrey O’Callaghan 2016